

Wind Turbine Blade Workshop February 24-35, 2004 Sheraton Uptown, Albuquerque, NM

Wind Turbine Testing and Certification

Walt Musial
National Wind Technology Center
National Wind Technology Center
Golden, CO USA

Walter_Musial@nrel.gov

Presentation Outline

- Why test blades?
- Testing methods
- Relevant standards and practices
- Future outlook

Why test blades?

- Blades designs are altered in production.
- Blade strength is dependent on production process and facility, as well as design.
- Blade properties are not known at every location.
- Blade designs cannot be fully represented by design analysis.
- Field repairs are extremely expensive.

What can we learn?

Design Verification

- Can the blade withstand the design loads?
- —Used in most certification testing.

Strength Verification

- —Does the actual blade strength match the design strength?
- —Used to verify blade structural design.

Verify Blade Properties

- —deflections maximum requirements for most standards
- -stiffness
- -stress/strain

Blade Test Labs

- NREL National Wind Technology Center – USA
- WMC / TU Delft Netherlands
- RISO National Laboratory – Denmark
- NaREC United Kingdom
- Private labs -- LM Glasfibers, NEG Micon, MHI, other manufacturers.

Static Testing

- Tests the blade's ability to withstand extreme design load cases (e.g. 50 year gust)
- Four load quadrants worst case in each direction.
- Verification of buckling stability
- Loads applied with cranes, actuators, etc.
- Required by all international certification authorities.
- Failure beyond limit load is recommended but not required.
- Property measurements deflection, strain verification, frequency – performed in conjunction

Types of Static Loading

Distributed Loading

Hydraulic Actuators - NREL

Types of Static Testing

Progressive Loading

- Portions of the blade are tested in multiple tests.
- Test loads can be applied at single station.
- Allows rapid execution of multiple load cases.
- Shear loads are higher.

Fatigue Testing

National Wind Technology Center Forced Hydraulic Loading

- Verifies the blade's ability to withstand the operating loads for a full design life.
- ■30 year life > 5 x 10⁸ cycles applied with accelerated load history to 1 to 10 million cycles.
- Required by IEC-61400-23, IECWT01, Danish Energy Agency
- Load applied on one or two axes.
- Load methods vary among labs.

Blade Fatigue Test Systems

Forced-displacement

- ❖Used at NREL, WMC/TU delft, CRES
- Hydraulic actuators accurate load replication
- Dual axis capability representative loading
- ❖High equipment cost
- Large energy consumption
- **❖Lower test speeds limited by hydraulic capacity**
- Cannot test entire blade length

Eccentric Mass Resonance Excitation

- ❖ Denmark RISO, LM, Vestas, NEG Micon/UK
- **❖Low Equipment Cost**
- **❖Fast test speed**
- **❖Can test the whole blade span.**
- **❖** Adds unwanted moments due to axial loads
- **❖Cannot simultaneously apply flap and lead-lag**

Forced Hydraulic Loading

Scaling to Large Blades

- Blade fatigue resource requirements grow cubically with blade length
- Test speed limitations on Hydraulic Flow and energy use.
- High capital expense to expand test hardware for current method.
- New fatigue method was developed

Implementation of Hybrid Resonance Blade Fatigue Test System

- Large flap actuator is replaced by a smaller hydraulic exciter.
- Edge actuator uses existing bell crank.
- Uses 1/3 the energy and cycles 2x faster. *0.35-Hz* <<*0.70-Hz*
- Tests full-blade length
- Can be scaled up to 70-m blades
- Uses existing equipment and experience at NREL.
- PCT patent application filed

Small Blade Fatigue Test System

H-40 Rotor Blades South West Windpower

- New testing capability to test small turbine blades
- Single axis fatigue test using resonance excitation.
- Multiple blades tested on a single rotor.
- 3-6 Hz cycling using base excitation.
- Scalable to 3-4 meter blades.

Equivalent Damage Calculation

- Blade section properties
- Convert load to stresses
- S-N data for each location
- Goodman diagram
- Miner's rule

Mandell et al, "New Fatigue Data for Wind Turbine Blade Materials" ASME Transactions, Nov 2003

- Determine fatigue load for equivalent damage
 - Load acceleration Define Number of test cycles
 - Define test load ratio
 - Define phase relationship between flap and lead-lag

Flap Bending Test Loads - Example

Relevant Codes for the Certification of Rotor Blades

- **IEC WT01** "IEC System for Conformity Testing and Certification of Wind Turbines, Rules and Procedures"
- **IEC 61400-1** "Wind Turbine Generator Systems Part 1: Safety Requirements"
- IEC 61400-23 "Wind Turbine Generator Systems Part 23: Full-scale Structural Testing of Rotor Blades"
- **IEC 61400-24** "Wind Turbine Generator Systems Part 24: Lightning Protection"
- Germanischer Lloyd "Regulations for the Certification of Wind Turbines"
- **Danish Energy Agency DS-472** Type Approval Scheme for Wind Turbines Recommendation for Design Documentation and Test of Wind Turbine Blades.
- NVN 11400-0 "Wind Turbines Part 0: Criteria for Type Certification Technical Criteria"

Application of IEC 61400-23 Design and Test Load Factors

Design load factors

- Loads provided by manufacturer
- Understand what factors have been applied.

Design Material factors

- Material factors are embodied in the blade
- Not used again for test.
- Environmental factors must be considered.

Test load factors (TLF)

- TLFs recommended by IEC 61400-23
- Account for uncertainty introduced in the lab.

- B Test Load Factors
- C Reserve Margin
- D Environmental Effects

IEC 61400-23 Test Load Factors

Blade to Blade Variations

- Accounts for possible strength variations-single blade test
- IEC 61400-23 recommends a factor of 1.1

Test Load Uncertainty

- Accounts for uncertainty in fatigue formulation
- IEC 61400-23 recommends a factor of 1.05 on fatigue loads.

Environmental

- Accounts for more benign laboratory test conditions.
- No specified level Properties vary commonly 1.05 to 1.3

Lightning Protection

IEC 61400-24 "Wind Turbine Generator Systems Part 24: Lightning Protection"

- Rotor blades shall have at least one receptor at each shell.
- More than one receptor recommended for larger blades (blade length greater than 30m)
- Minimum dimensions of down conductors given.

Summary of Full-Scale Blade Test Requirements

- Static test is required in all international standards.
- Fatigue test is required in IEC WT01 and DS 472
- Tests in flapwise direction and in lead-lag direction
- Performed by a recognized testing body or supervised by the certification body
- Blade shall withstand the tests without showing significant damage regarding safety or blade function

[Requirements for the Certification of Rotor Blades – Germanischer Lloyd]

Blade Testing -Future Requirements

DOE/NREL Test Facilities

Structural Testing Future Facilities

Capacity of current facilities at NREL is inadequate

- Stronger test stand foundation is being developed
- Higher strength for 45-m blades 8x10⁶ ft-lbs
- Greater stroke / larger force capacity for loading apparatus

Long-term - Larger Test Facilities are planned.

- 70- meter capacity
- 3 test bays
- 50,000 kN-m static load capacity

Blade Trends

- Standards compliance increasing.
- Blades are getting longer.
- Offshore drivers Transportation and erection issues are less important.
- Land-based turbines may not follow trend.
- Facilities are too small for 2MW + blades.
- Current test facilities busy driven by innovations.